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1. Introduction

During the last string theory revolutions we have learned that an undeniable relationship

between strings and noncommutative field theories exists. As exemplified by the study

of D-branes in presence of a finite constant B-field [1, 2], it seems that geometry can be

noncommutatively deformed whenever stringy effects are relevant. In particular cases like

that of strings in a constant graviphoton background, the deformation produced lies in the

Graßmann sector of superspace whose undeformed coordinates are characterised by anti-

commutators, giving raise to what has been called non(anti)commutative field theories [3].

Enormous effort has been made understanding both noncommutative and

non(anti)commutative field theories and their relation to string theory [4 – 11]. Most studies

introduce a Moyal product to deform the (super)field algebra of known theories, as this is

precisely the kind of geometry that results from string constant backgrounds. The resulting

theories usually break Lorentz symmetry and, in the non(anti)commutative case, also ei-

ther supersymmetry or chirality. The Moyal product construction is very satisfactory when

dealing with deformations of Euclidean (super)spaces, but breaks down in curved geometry

where it should be replaced by a more general object like the Kontsevich product. As an

example, the deformed geometry of D-brane worldvolumes in curved backgrounds is given

to third order in the deformation parameter precisely by such product [12], which unfor-

tunately can only be constructed order by order in a series expansion. On the other hand,

ordinary Moyal product-noncommutative field theories suffer from bad causal behaviour

when time is treated as a noncommuting coordinate.
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More recently, in view of the limitations inherent to such methods, an alternative non-

commutative deformation of gauge theories based on the notion of the Weyl bundle has

been proposed [13, 9]. In these works, authors use the powerful machinery developed by

Fedosov [14, 15] which consists in a Weyl deformation of a symplectic tangent space, where

the symplectic structure plays the role of the deformation parameter. The advantage of

using this method is twofold: it allows the description of physical situations where the

background field is not constant, and in addition spacetime global symmetries remain un-

broken by the deformation itself since it affects the tangent and not the base space. This

approach to deformation quantization has been used extensively to study string theory

D-branes in non-constant B-fields and more general curved backgrounds [13], supermem-

brane models [9], the fuzzy sphere [16], the canonical formulation of noncommuative gauge

theories [17], and BRST symmetry in quantum field theories [18].

One may naturally ask if its possible to generalize Fedosov’s ideas to describe more

general physical setups like non(anti)commutative field theories associated to non-constant

graviphoton backgrounds. At first sight one could consider an atlas where the problem

may be stated in terms of constant fields on each open set, as the Darboux theorem is

only valid in the neighbourhood of a point and not globally, but we must then consider

highly nontrivial matching conditions on the overlapping of the sets. It is therfore more

convenient to directly develop a non(anti)commutative product for general fields extending

the known one for constant fields. Also, from a quantum field theoretical point of view,

constructing a mechanism that deforms superspace but preserves super Poincaré symmetry

(or its Euclidean counterpart) is relevant in its own right. Our work has precisely this goal.

The deformation quantization of certain Poisson brackets in the context of Batchelor

supermanifolds using Fedosov’s approach was first done by M. Bordemann, [20, 19]. In the

present paper we are mostly interested in field theories involving fermionic fields, as we

explicitly discuss in section 5. Although the Batchelor approach is an interesting one from

a mathematical and physical point of view it does not allow the introduction of fermionic

fields, it is for this reason that the Batchelor definition of supermanifolds is not followed

in supersymmetric field theory.

In this paper we extend Fedosov’s deformation quantization to N = 1 superspace. We

take a symplectic supermanifold and ordinary superspace as the tangent and base space

respectively, and propose a new associative Weyl product which is non(anti)commutative,

meaning it is noncommutative for even objects that naturally fulfil commutation relations,

and nonanticommutative for odd objects naturally satisfying anticommutation relations.

Such product endows the space of superfields with a superalgebra structure. A key fea-

ture of our formulation is the preservation of super Poincaré symmetry, a fact derived

from a deformation operator acting exclusively on tangent superspace variables. The su-

per Poincaré algebra acting on base superspace is therefore totally transparent to such

deformation. We prove that in certain cases, the projection of the Weyl (super)product on

the base supermanifold, results in the nonanticommutative product associated to nilpotent

Q– and D-deformations such as those studied in [4, 6 – 8]. And further explore more gen-

eral situations where the nonanticommuting parameter is actually a function of the base

supermanifold variables. This last subject is not even formulated in the literature as a
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supersymmetric extension using Kontsevich methods. [21].

2. Weyl algebra bundle

In this section we review Weyl algebra bundle theory basics [15]. We start with a symplectic

manifold (M,ω) of dimension 2n, where the two-form ω defines a symplectic structure on

each tangent space Tx(M), x ∈M .

The formal Weyl algebra Wx is an associative algebra of formal series over C which

stems from the symplectic space Tx(M). Its elements are defined by

a(y, ~) =
∑

k,|α|≥0

~
kak,αy

α, (2.1)

with ~ being the formal parameter, y ∈ Tx(M) with coordinates (y1, . . . , y2n), and α =

α1, . . . , α2n a multi-index such that yα = (y1)α1 · · · (y2n)α2n . It is possible to introduce an

ordering prescription for the terms if we define the degree of the variables to be deg yi =

1,deg ~ = 2. The terms in the series can then be arranged by increasing degrees 2k + |α|.

A more friendly notation is

a(y, ~) =
∑

k,p≥0

~
kak,µ1...µp

yµ1 . . . yµp , (2.2)

where it is understood that p = 0 terms correspond to the sum
∑

k ~
kak.

The product of elements in this algebra is given by the Weyl product rule

a ◦ b = exp

(

−
i~

2
ωij ∂

∂yi

∂

∂zj

)

a(y, ~)b(z, ~)

∣

∣

∣

∣

z=y

=
∞
∑

k=0

(

−
i~

2

)k 1

k!
ωi1j1 . . . ωikjk

∂ka

∂yi1 . . . ∂yik

∂kb

∂zj1 . . . ∂zjk
,

(2.3)

which is associative and independent of the particular choice of basis on the tangent space

Tx(M). The algebras Wx constitute the fibers of the Weyl bundle W of formal Weyl

algebras, which is defined through the union of all fibers

W =
⋃

x∈M

Wx. (2.4)

Differential q-forms on M with values in W are sections of the bundle W ⊗ Ωq defined by

it formal series

a(x, y,~) =
∑

k,p≥0

~
kak,i1...1p,j1...jq

(x)yi1 . . . yipdxj1 ∧ . . . ∧ dxjq , (2.5)

where the coefficients ak,i1...1p,j1...jq
(x) are covariant tensors fields symmetric in i1 . . . ip

and antisymmetric in j1 . . . jq depending on a point in M . They constitute an algebra

C∞(W ⊗ Ω∗) under the usual Weyl product and the exterior product of forms, with unit

identically equal to 1. The total degree deg a = 2k + p corresponding to the variables ~

– 3 –
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and yi establishes a filtration within this algebra W ⊗ Ω∗ ⊃ W1 ⊗ Ω∗ ⊃ W2 ⊗ Ω∗ ⊃ · · · .

For q = 0 we have sections simply as formal series

a(x, y,~) =
∑

k,|α|≥0

~
kak,α(x)yα, (2.6)

with ak,α(x) covariant symmetric tensor fields on M . The bracket of two forms a ∈W⊗Ωq1

and b ∈W ⊗ Ωq2 takes the form

[a , b] = a ◦ b− (−1)q1q2b ◦ a. (2.7)

A form a will be called central if for any b ∈ C∞(W ⊗Ω∗) the commutator (2.7) vanishes.

The center of C∞(W ⊗ Ω∗) consists exclusively of forms not containing y, which suggests

a projection into the center by setting y to zero. For a ∈ C∞(W ) we will denote such

projection by

σ(a) = a(x, 0,~). (2.8)

It is customary to define operators that rise and lower the rank of differential forms: δ :

C∞(Wp⊗Ωq) → (Wp−1⊗Ωq+1) and δ∗ : C∞(Wp⊗Ωq) → (Wp+1⊗Ωq−1), and respectively

lower and rise the degree of each term in the formal series. These fulfil the following

properties

• δ2 = (δ∗)2 = 0,

• δ(a ◦ b) = δ(a) ◦ b+ (−1)q a ◦ δ(b), for a ∈ Ωq

• a = δδ−1a+ δ−1δa+ a00,

where apq denotes the homogeneous part of Weyl degree p and cohomological degree q of

a ∈W ⊗ Ωq. Note that the last relation is similar to the Hodge-Rahm decomposition, yet

δ is a pure algebraic operator on M as we can see from its realization in local coordinates

δa = dxk ∧
∂

∂yk
a = −

i

~
[ωijy

idxj, a]. (2.9)

To define a connection on the Weyl bundle one recalls there exists a symplectic connection

on any symplectic manifold that is torsion free and preserves the symplectic structure

∂kωij − ωnlΓ
n
mk − ωknΓn

ml = 0. (2.10)

Using Darboux coordinates one can check that the connection symbols Γijk are completely

symmetric Γ[ijk] = 0. The symplectic connection can be used to define a connection on the

bundle W ⊗ Ω∗ by its action on elements of C∞(W ⊗ Ω∗)

∇a = dxi ∧∇ia , (2.11)

in Darboux coordinates it reduces to

∇a = da+
i

~
[Θ, a], (2.12)

where the connection symbols are Θ = 1
2Θijky

iyjdxk. The properties of the symplectic

Weyl bundle connection are
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• ∇(a ◦ b) = (∇a) ◦ b+ (−1)q a ◦ (∇b), for a ∈ Ωq,

• for any φ ∈ Ωq,∇(φ ∧ a) = dφ ∧ a+ (−1)qφ ∧∇a .

More general covariant derivatives D on the bundle may be considered by adding a one

form γ globally defined on M with values in W ,

Da = ∇a+
i

~
[γ, a]. (2.13)

With this at hand the Weyl curvature may be defined as

Υ = R+ ∇γ +
i

2~
[γ, γ], (2.14)

where R is the curvature associated to the connection ∇. The Weyl curvature satisfies the

Bianchi identity

DΥ = ∇Υ +
i

~
[γ,Υ] = 0. (2.15)

Furthermore, for any section a ∈ C∞(W ⊗ Ω∗)

D2a =
i

~
[Υ, a]. (2.16)

In general, transitions on the bundle T (M) will induce transitions onW⊗Ω∗. The infinites-

imal gauge transformations on elements of C∞(W ⊗ Ω∗) are expressed as automorphisms

given by

a→ a+ [a, λ], (2.17)

with infinitesimal λ ∈ C∞(W ⊗ Ω∗). The corresponding gauge transformations for the

connections D are

D → D + Dλ , (2.18)

consequently,

Da→ Da+ [Da, λ]. (2.19)

There exists a relation between the center and an Abelian subalgebra of the Weyl

bundle that maps the Weyl product to the Moyal product through the projection (2.8).

To establish such relation one first defines Abelian connections DA as connections whose

Weyl curvature is a central form in C∞(W ⊗ Ω∗), i.e.,

[ΩA, a] = 0 ∀a ∈ C∞(W ⊗ Ω∗). (2.20)

An example of such connections may be expressed as

DAa = ∇a+
i

~
[ωijy

idxj + r, a], (2.21)

with deg r > 3. The Abelian subalgebra is the set WA = {a ∈ W/DAa = 0} associated to

DA. There is a one-to-one correspondence between the projections defined above (2.8) and
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elements of WA. It is clear that for every a ∈ WA there is a projection projection to the

center

σ(a) = a00. (2.22)

Now, given a00 there is a unique element a ∈ WA with such projection. By means of

this construction, from the Weyl product of two elements a, b of WA we obtain a globally

defined star product on M which coincides with the Moyal product when ωij is constant

and the symplectic connection is zero

σ(a ◦ b) = a00 ⋆ b00. (2.23)

3. Weyl superalgebra bundles

The main purpose of this work is the generalization of the Weyl bundle construction to

superspace in order to study deformations of superfield algebras, which can then be used

to extend supersymmetric field theories expressed in the superfield formalism. Following

closely the known construction of Weyl bundle, we will need a symplectic structure ω

defined on a supermanifold M. In the following section we give the first steps toward such

extension of deformation quantization, by defining this concepts and introducing a new

Weyl product of superfields.

3.1 Symplectic supermanifolds

The structure underlying the concept of supermanifold 1 is that of R
p|q space, i.e. the

topological space R
p endowed with a sheaf C∞[θ1, θ2, . . . , θq] of super R-algebras freely

generated over C∞(Rp) by the Graßmann (Z2-graded) algebra basis {θ1, θ2, . . . , θq}. We

will represent the set of superspace coordinates by

zA = (xm, θα̂), m = 1, . . . p, α̂ = 1, . . . , q, (3.1)

where capital indices consist of the total set of superspace indices, which comprise lowercase

m,n, . . . for standard spacetime directions, and α̂, β̂, . . . for doted and undoted Graßmann-

odd indices. The anticommuting (odd) variables θα̂ obey

{θα̂, θβ̂} = 0, α̂, β̂ = 1, . . . , q. (3.2)

Like usual manifolds, that are locally isomorphic to R
p, a supermanifold M of dimen-

sion p|q consists of a topological space M together with a sheaf of R-algebras called the

structure sheaf OM, such that M is locally isomorphic to R
p|q.

The differential geometry involving supermanifolds is quite similar to the classical one,

having similar definitions and properties for super vector bundles, connections and actions

of super Lie groups. The most significant difference arises from the existence of differential

forms with arbitrary high degree, which hinders a straightforward generalization of inte-

gration. Nevertheless, after introducing the Berezinian, integration over supermanifolds

can be easily defined.

1For an extensive review on the subject of supermanifolds from a mathematical point of view see [22].

The generalization of supermanifolds aimed at more physically inspired definitions can be found in [23, 24]
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A super vector bundle of rank p|q over M is a sheaf of locally free OM-supermodules

V of dimension p|q. It can be also defined as a fibre bundle over M with typical fiber R
p|q,

having as structure group the super general linear group GL(p|q). The first example of

super vector bundle is the tangent bundle of a supermanifold, which can be constructed

from the derivations of the superalgebra OM satisfying

D(fg) = (Df)g + (−1)p(D)p(f)f(Dg), ∀f, g ∈ OM. (3.3)

where p defines the Z2-grading of objects (0 for even, 1 for odd). The O-supermodule of

derivations of OM is a vector bundle of dimension p|q called the tangent bundle T (M),

whose local basis consist of even ∂/∂xm and odd ∂/∂θα̂ derivations. Sections of the tangent

bundle are called vector fields and are locally written as

Y = Y AeA = ym ∂

∂xm
+ ηα̂ ∂

∂θα̂
. (3.4)

The set of vector fields Vect(M) is a super Lie algebra.

The cotangent bundle Ω1
M of M is the dual of T (M), whose basis we denote by

dzA = (dxm, dθâ). One can interpret the duality pairing as an inner product 〈·, ·〉 : T (M)⊗

Ω1
M −→ OM, satisfying

〈fY, gω〉 = (−1)p(Y )p(g)fg〈Y, ω〉, ∀f, g ∈ OM. (3.5)

In the local basis, such product can be obtained by linearity from
〈

∂

∂zA
, dzB

〉

= δB
A . (3.6)

The wedge product of 1-forms is defined through

dzA ∧ dzB = −(−1)p(A)p(B)dzB ∧ dzA (3.7)

where p(A) indicates the parity of an object with index A. One can linearly extend this

definition to the exterior product ∧ : Ωk
M × Ωl

M −→ Ωk+l
M of k-forms with l-forms, provid-

ing the set of all forms with the structure of a superalgebra which is called the exterior

superalgebra Ω∗
M ≡ ∧∗Ω1

M. Note that in contrast with the wedge product of forms, super-

coordinates and superfield components conform supercommutative superalgebras like

zAzB = (−1)p(A)p(B)zBzA, (3.8)

as the concepts of cohomological degree of a form, and that of Graßmann parity are inde-

pendent.

The derivative d : OM −→ Ω1
M defined by

〈Y, df〉 = Y (f), (3.9)

extends uniquely to the exterior derivative d = dzA∂/∂zA on the exterior superalgebra and

satisfies

d2 = 0, d(ωχ) = dω ∧ χ+ (−1)pω ∧ dχ, ω ∈ Ωp
M. (3.10)

– 7 –
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From here onwards we will take p = 2n even and q = 4N representing the physically

relevant set of odd variables, thus studying only the supermanifold R
2n|4N . In 4|4 dimen-

sions, for example we have A = (m,α, α̇)., i.e. zA = (xm, θα, θ̄α̇), with α = 1, 2, α̇ = 1̇, 2̇.

The notation we use is consistent with that of Wess and Bagger [25] for differential forms

in superspace.

A symplectic supermanifold is a 2n|4N dimensional supermanifold M endowed with a

closed, non-degenerated two-form ω called the symplectic superform. In coordinates,

ω = ωABdz
A ∧ dzB . (3.11)

The Darboux theorem [27, 29, 28] states that there exist local coordinates on the

supermanifold where the symplectic superform ω has the following block shape

ωAB =

(

ωmn 0

0 ω
α̂β̂

)

, (3.12)

with Graßmann-even components having definite symmetry under index exchange ωmn =

−ωnm and ω
α̂β̂

= ω
β̂α̂

. The symplectic superform can be used to rise and lower indices.

Symplectic supermanifolds always admit a torsionless affine connection preserving the sym-

plectic superform, called (super)symplectic connection. We will denote the connection by

∇, and define its coefficients ΓA
BC by its action on the tangent base

∇eA
eB = ∇AeB = ΓC

ABeC . (3.13)

Such coefficients can be found from the Leibnitz property of the covariant derivative

∇Y1
(ω(Y2, Y3)) = (∇Y1

ω)(Y2, Y3) + ω(∇Y1
Y2, Y3) + ω(Y2,∇Y1

Y3) (3.14)

The conditions for the vanishing of the torsion in superspace can be derived from its

very definition in terms of vector fields Y1 and Y2

T = ∇Y1
Y2 −∇Y2

Y1 − [Y1, Y2], (3.15)

resulting in the following components

TA
mn = ΓA

mn − ΓA
nm

TA
mα̂ = ΓA

mα̂ − ΓA
α̂m

TA

α̂β̂
= ΓA

α̂β̂
+ ΓA

β̂α̂

(3.16)

A torsion free affine connection associated to our symplectic superform is defined by

the equation

∇Xω(Y1, Y2) = ∇X [ω(Y1, Y2)] − ω(∇XY1, Y2) − ω(Y1,∇XY2) = 0 (3.17)

In Darboux coordinates, the resulting conditions on the connection coefficients (3.13) are

ωklΓ
k
mn + ωnkΓ

k
ml = 0

ω
α̂β̂

Γβ̂
mn − ωnkΓ

k
mα̂ = 0

ω
α̂β̂

Γβ̂

δ̂γ̂
+ ω

γ̂β̂
Γβ̂

δ̂α̂
= 0

ωmnΓn

α̂β̂
− ω

β̂δ̂
Γδ̂

α̂m = 0

(3.18)

– 8 –
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Following (3.16), the torsionless components of the symplectic connection are

Γlnm = Γnlm a completely symmetric object

Γlα̂n = Γnα̂l a completely symmetric object

Γ
lα̂β̂

= Γ
β̂α̂l

antisymmetric in 1,2 positions but symmetric in 2,3

Γ
γ̂α̂β̂

= −Γ
β̂γ̂α̂

a completely antisymmetric object

3.2 Weyl superalgebra bundle through a new associative superproduct

We will consider a symplectic supermanifold (M, ω) locally isomorphic to R
4|4 representing

N = 1 symplectic superspace, as most results are easily generalized to extended superspace.

Local coordinates of z ∈ M, and the components of a generic vector Y ∈ Tz(M) in

tangent space, are to be denoted zA = (xm, θα, θ̄α̇, ) and Y A = (ym, ηα, η̄α̇) respectively,

where θα̂, ηα̂ are Graßmann-odd. Without loss of generality we take the symplectic tensor

defining the symplectic structure over fibers of T (M) to have block diagonal components

ωAB as in (3.12).

A Weyl superalgebra Wz defined locally on the tangent superspace Tz(M) is an asso-

ciative superalgebra over C, its elements being formal series on the parameter ~

f(Y,~) =
∑

k,p

~
k fk,A1,...,Ap

Y A1 · · ·Y Ap (3.19)

Taking advantage of the nilpotent nature of odd coordinates, we can collect the terms in

the formal series into a superfield

f(Y,~) = φ(ym,~) + ηαξα(ym,~) + · · · , (3.20)

whose components are elements of a standard Weyl algebra

φ(ym,~) =
∑

k,p

~
k φk,m1,...,mp

ym1 · · · ymp . (3.21)

The component fields in (3.21) will have tensor or spinor indices, and Graßmann parity

inherited from coefficients in the formal series (3.20). An equivalent description is obtained

by taking a formal series in even coordinates

f(Y,~) =
∑

k,p

~
k fk,m1,...,mp

ym1 · · · ymp , (3.22)

whose coefficients are superfields of tangent space odd coordinates.

fk,m1,...,mp
= φk,m1,...,mp

+ ηαξα,k,m1,...,mp
+ · · · (3.23)

The vector bundle corresponding to the sheaf of Weyl superalgebras is the Weyl su-

peralgebra bundle W, whose sections are functions of the symplectic base space as in

f(z, Y,~) =
∑

k,p

~
k fk,A1,...,Ap

(z)Y A1 · · ·Y Ap , (3.24)

– 9 –
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or equivalently, superfields like (3.20) with components having non constant coefficients

fk,m1,...,mp
(z).

A Weyl superalgebra can be then defined by means of the following Weyl product,

f ⊚ g = exp

(

−
i~

2
ωMN ∂

∂YM

∂

∂Ỹ N

)

f(Y,~)g(Ỹ ,~)

∣

∣

∣

∣

Ỹ =Y

. (3.25)

Since this product should preserve the degree, we propose deg(η) = 1. Similar structures

that appeared in the context of anti-Poisson brackets on Graßmann algebras [26] were

developed further into a Fedosov-type procedure on the dual Graßmann algebra bundle

of a given vector bundle [19, 20]. Note that the product (3.25) differs from such anti-

Moyal products as it acts on the tangent superspace T (M), thus protecting super Poincaré

symmetry on M from breaking. In Darboux coordinates [27, 28] the Poisson structure

ωMN becomes block diagonal allowing a separation of the sum inside the exponential into

a purely bosonic and a purely fermionic part. Each term in turn, as a bilinear operator, is

even and commutes with the others. For instance
[

ωmn ∂

∂ym

∂

∂ỹn
, ωab ∂

∂ηa

∂

∂η̃b

]

= 0 (3.26)

which is also true for any other combination of indices (note that a term with mixed indices

ωma is absent). This allow us to split the exponential

exp

(

−
i~

2
ωMN ∂

∂YM

∂

∂Ỹ N

)

= exp

(

−
i~

2
ωmn ∂

∂ym

∂

∂ỹn

)

exp

(

−
i~

2
ωab ∂

∂ηa

∂

∂η̃b

)

, (3.27)

and expand the Weyl superproduct as the nested application of two products: The usual

Weyl rule for standard spacetime,

f ◦ g = exp

(

−
i~

2
ωmn ∂

∂ym

∂

∂ỹn

)

f(Y,~)g(Ỹ ,~)

∣

∣

∣

∣

Ỹ =Y

(3.28)

and a new one for the fermionic coordinates

f © g = exp

(

−
i~

2
ωab ∂

∂ηa

∂

∂η̃b

)

f(Y,~)g(Ỹ ,~)

∣

∣

∣

∣

Ỹ =Y

. (3.29)

Though both this products are formal series of the exponential

f ◦ g =

∞
∑

k=0

(

−
i~

2

)k 1

k!
ωm1n1 . . . ωmknk

∂kf

∂ym1 . . . ∂ymk

∂kg

∂ỹn1 . . . ∂ỹnk
, (3.30)

in the fermionic case the series is truncated due to nilpotency of odd derivations. Nesting

the products ◦ and © can be understood as the replacement of the standard product in

the formal series of ◦ with the product rule of ©, that is

f ⊚ g =
∞
∑

k=0

(

−
i~

2

)k 1

k!
ωm1n1 . . . ωmknk

∂kf

∂ym1 . . . ∂ymk
©

∂kg

∂ỹn1 . . . ∂ỹnk
. (3.31)
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Weyl products for the purely bosonic case (only ωmn 6= 0) are associative. Including the

bosonic and the full fermionic blocks into the form ωMN will lead to an associative product

as a result of nesting the © products already known to be associative. As the defined

product is covariant, a completely general proof of associativity can be worked out in

Darboux coordinates. This can be verified directly by expanding the product f©(g©h) for

the fermionic part exclusively. One can see why this work by looking at the particular case

with only two fermionic coordinates Y A = (ym, η1, η2), which has a particular importance in

the description of the Weyl bundle over chiral superspace having precisely such coordinates.

The Weyl rule in this setup will looks like

f © g = fg +

(

−
i~

2

)

ωαβ(−1)p(f)∂αf∂βg −
1

2

(

−
i~

2

)2

ωαβωγδ∂αγf∂βδg, (3.32)

where we use the standard spinor index notation for the odd variables α = 1, 2 and the

usual shorthand ∂α = ∂
∂ηα to denote derivation respect to Y α = ηα (with its straightforward

extension ∂αβ = ∂α∂β). Note that the series is truncated to second order, which facilitates

direct verification of the associativity

(f © g) © h = fgh

+

(

−
i~

2

)

ωαβ
[

(−1)p(fg)∂αfg∂βh+ (−1)p(g)f∂αg∂βh+ (−1)p(f)∂αf∂βgh
]

−
1

2

(

−
i~

2

)2

ωαβωγδ
[

∂αγfg∂βδh+ f∂αγg∂βδh+ ∂αγf∂βδgh

−2(−1)p(fg)∂αf∂βγg∂δh− 2(−1)p(g)∂γαf∂βg∂δh+ (−1)p(f)∂αf∂γg∂βδh
]

= f © (g© h). (3.33)

A © product involving 4N odd variables, as required by more general N -supersymmetric

theories, is obtained by repeatedly nesting products as (3.32) above, resulting in an associa-

tive product with a truncated expansion of order 4N . If we include the standard ◦ product

in Darboux coordinates one also concludes that this product is associative in general, from

the covariant character of ⊚.

The Weyl superalgebra is easily extended to include q-superforms on M, that is,

sections on W ⊗ Ω∗ expressed as

f(z, Y,~) =
∑

k,p

~
k fk,A1,...,Ap,B1...,Bq

(z)Y A1 · · ·Y ApdzB1 ∧ . . . ∧ dzBq . (3.34)

These differential forms constitute an algebra with multiplication defined by the combined

exterior superproduct of forms given in § 3.1 together with the Weyl product acting on

tangent superspace variables.

The commutator of 2 superforms f ∈ W ⊗ Ωq1 and g ∈ W ⊗ Ωq2 is

[f, g] = f ⊚ g − (−1)q1q2(−1)p(f)p(g)g ⊚ f. (3.35)

A central superform f is such that for any g ∈ W ⊗ Ω∗, [f, g] = 0. In (3.35) the wedge

exterior product ∧ acting on forms is understood.

– 11 –
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4. Superspace deformations

4.1 Abelian subalgebra and deformations

In the purely bosonic case the Weyl product is linked to deformations on the base space

through a correspondence between C∞(M) and the Abelian subalgebra that, in Darboux

coordinates, results in the well known Moyal product, as was proved in [15]. In this section

we will show that this is also the case for the Weyl superproduct, which for the chiral case

give us precisely the nonanticonmutative product extensively studied in this decade, see

for example [3, 6, 7].

We start with the concept of Abelian connection. A connection DA on the Bundle W

is called Abelian if for any section f ∈ W ⊗ Ω∗

D2
Af = 0 (4.1)

Inspired by Fedosov construction, we will lift the supersymplectic connection defined

in § 3.1 to the Weyl superalgebra bundle

D = dzA ∧∇Af. (4.2)

D is a covariant derivative acting on C∞(W ⊗ Ω∗) and obeying the following properties

D(f ⊚ g) = Df ⊚ g + (−1)q1+p(f)f ⊚ Dg

D [f , g] = [Df, g] + (−1)q1+p(f) [f,Dg]

Another important operators involved in the construction of the Abelian connection

are δ : Wp ⊗Ωq → Wp−1 ⊗Ωq+1 that raises the rank of forms and acts as a sort of exterior

superderivative, and δ∗ : Wp ⊗Ωq → Wp+1 ⊗Ωq−1, that lowers the rank of forms and acts

as a contraction operator. In coordinate basis they are realized as

δf = dzA ∧
∂

∂Y A
f δ∗f = iY A ∧

∂

∂zA
f, (4.3)

Using (3.8), (3.7) and

dzA ∧ Y B = (−1)p(Y )p(dz), (4.4)

and observing their action on each term in the formal series

fk,A1,...,Ap,B1,...,Bq
Y A1 · · ·Y ApdzB1 ∧ · · · ∧ dzBq , (4.5)

one can check their properties

δ2 = 0, (4.6)

(δ∗)2 = 0, (4.7)

δ(f ⊚ g) = δf ⊚ g + (−1)p(f)+qf ⊚ δg, (4.8)

f = δδ−1f + δ−1δf + f00. (4.9)
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Here fpq is the coefficient with p times Y and q times dz, so that (p+ q)δ−1fpq = δ∗fpq.

Given the supersymplectic connection D, there always exists an Abelian connection

DA · = D · +
i

~

[

(ωABY
AY B + r), ·

]

(4.10)

where r ∈ C∞(W3 ⊗ Ω1) satisfies δ−1r = 0.

The proof follows the corresponding one in Fedosov [15, §5.2], where mainly the prop-

erties of δ, δ−1 and degree counting are used. The arguments are exactly the same. The

curvature of the Abelian connection is

F = −
1

2
ωAB dz

A ∧ dzB +R− δr + Dr +
i

~
r2 (4.11)

We consider then r satisfying

δr = R+ Dr +
i

~
r2, (4.12)

which ensures that DA is Abelian. Eq (4.12) has a unique solution belonging to C∞(W3 ⊗

Ω1) and satisfying δ−1r = 0. The main point in Fedosov’s proof, which can be extended

to the supersymplectic case, is to show that

r = δ−1

(

R+ Dr +
i

~
r2
)

(4.13)

has a unique solution belonging to C∞(W3⊗Ω1). This follows from the iteration procedure

defined by

rn+1 = δ−1R+ δ−1

(

Drn +
i

~
r2n

)

, n = 0, 1, 2, . . . (4.14)

From degree counting one obtains deg(rn − rn+1) ≥ n + 3 implying that the terms for

any fixed degree of the sequence are the same for large enough n. There exists then a

unique solution in C∞(W3 ⊗ Ω1). It is then straightforward to show that this solution

satisfies (4.12) as δ−1r = 0 holds by construction. Uniqueness arises from acting on (4.12)

with δ−1 and using the above property of r.

With this at hand we propose an Abelian connection of the simplest form

DAf = Df − δf (4.15)

Once we have the Abelian connection, we use it to find the elements of the Abelian

sub(super)algebra WA = {f ∈ W : DAf = 0}. There is a one-to-one correspondence be-

tween the set of solutions to the equation DAf = 0 and functions on the base space M,

that relates the Weyl product to a deformation on the base space. A proof of this cor-

respondence is a straightforward generalization of the original theorem by Fedosov (5.2.4

in [15]).

Let us consider a section f ∈ C∞(W), f = f(x, θ, y, η), and focus in the Abelian

subalgebra DAf = 0. As in Fedosov [15] we take

δf = (DA + δ)f, (4.16)

– 13 –
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being f a 0-form for which δ−1f = 0 holds, the Hodge-De Rham decomposition results in

f = f |y=η=0 + δ−1(DA + δ)f. (4.17)

Given f |y=η=0 = f(x, θ, 0, 0), as δ−1 raises degree, an iteration procedure yields existence

and uniqueness of the solution. The bijection then follows from (4.17).

Considering bosonic coordinates only, it is known that the deformation induced in base

space by a Weyl product in Darboux coordinates is precisely the Moyal product [15, 9].

More succinctly, let σ : WA −→ C∞(M)[[~]] be the projection to the center that maps

σ : a 7→ a00 and σ : b 7→ b00, then

σ(a ◦ b) = a00 ⋆ b00, (4.18)

where ⋆ stands for the Moyal product.

When general sections in the Abelian subalgebra defined by an arbitrary Abelian

connection are considered, the projection ς : WA −→ C∞(M)[[~]] to the center, will

take the ⊚ superproduct to a nonanticommutative ⋆ product

ς(f ⊚ g) = f00 ⋆ g00, (4.19)

where f , g, f00 and g00 are now superfields. The structure of such non(anti)commutative

⋆ product generalizes the usual treatment given in the literature [21], as the associated

non(anti)commuting parameter is actually a function of the base supermanifold variables

reflecting the curvature of the Abelian connection.

In the next section we will obtain the nonanticommutative ⋆ product for the flat case,

proposed in [4, 6, 7] as a projection of the ⊚ superproduct to the base space using Darboux

chiral coordinates in superspace.

5. Nonanticommutative Q-deformations from Weyl superproduct

In this section we will restrict ourselves to functions f ∈ C∞(W⊗Ω0) whose coefficients are

chiral superfields, i.e. D̄α̇f = 0, where D̄α̇ stands for the supersymmetric derivative in the

base space. In order to obtain nonanticommutativity in the base space, we will drop ωmn

and ωα̇β̇ terms. The Weyl rule is directly generalized to this setup in Darboux coordinates

f ⊚ g = f © g = fg +

(

−
i~

2

)

ωαβ(−1)p(f)∂αf∂βg −
1

2

(

−
i~

2

)2

ωαβωγδ∂αγf∂βδg, (5.1)

Now we consider the following Abelian connection

DAf = Df − δf = Df +
i

~

[

ωαβη
αdθβ, f

]

, (5.2)

and build the Abelian sub algebra of Graßmann-even superfields from the condition DAf =

0. The symplectic connection can be build using the super Poincaré generator

D = dθα ∧Qα (5.3)

– 14 –
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in chiral coordinates, we have

DAf = dθα ∧
∂

∂θα
f + ωαγωαβdθ

β ∂

∂ηγ
f (5.4)

Focusing on Graßmann-even superfields on the generalization of the Weyl bundle

f = f0 + ~f1αη
α + ~

2f2αβη
αηβ , (5.5)

the Abelian condition reduces to the following set of equations

∂f0

∂θγ
+ hωαβωαγf1β = 0,

∂f1α

∂θγ
+ ~ωδβωδγ2f2εβα = 0,

∂f2

∂θγ
= 0.

(5.6)

As the symplectic form is everywhere not degenerate, ωαβωαγ = δβ
γ , we easily find the

general form of an element of the Abelian subalgebra to be

f = f0 −Qαf0η
α +

1

4
QαQαf0(η

βηβ) (5.7)

The product of two elements of this subalgebra is projected back to the nonanticom-

mutative Moyal product [4, 6, 7]

f © g = f0g0 −
i~

2
ωαβQαf0Qβg0 −

1

2

(

−
i~

2

)2

ω2QαQαf0Q
βQβg0 + O(η), (5.8)

σ(f © g) = f0 ⋆ g0. (5.9)

A first attempt to introduce curvature in the previous setup is to include nonzero

connection coefficients Γγ
αβ

(∇ηω)(χ,ψ) = ηαχβψγ(∂αωβγ + Γγαβ + Γβαγ). (5.10)

for Graßmann vector fields η, χ and ψ. i.e.

η = ηα ∂

∂θα
(5.11)

The antisymmetric connection coefficients are defined up to an arbitrary completely anti-

symmetric tensor Θαβγ .

On sections a of the superbundle, the connection is lifted to

Da = dθα ∧∇αa = da+
i

h
[Θ, a], (5.12)

with

Θ =
1

2
Θαβγη

αηβdθγ . (5.13)

– 15 –



J
H
E
P
0
8
(
2
0
0
8
)
0
0
9

An Abelian connection can then be constructed via

DAa = da+
i

h

[

ωαβη
αdθβ +

1

2
Θαβγη

αηβdθγ , a

]

◦

. (5.14)

The associated Weyl subalgebra is obtained following the same procedure as for (5.6),

leading to an analogous correspondence between undeformed sections and Abelian ones,

now including a more general covariant derivative. The projection of the Weyl product

results in an expression which is formally the same as before (5.8) due to nilpotency of the

Grassmann basis, which truncates the series to second order in the deformation, preventing

the appearance of terms involving the curvature. This product does not correspond to the

standard Moyal product, as it includes connection coefficients. Explicit expressions for more

general non(anti)commutative products following the approach introduced in this work will

be presented in a forthcoming paper, this includes the description of D-deformations.
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A. Conventions

Spinor algebra follows the convention in Wess-Bagger

ηαηβ = −
1

2
εαβ(ηη), ηαηβ = +

1

2
εαβ(ηη),

η̄α̇η̄β̇
= −

1

2
ε
α̇β̇

(η̄η̄), η̄α̇η̄β̇ = +
1

2
εα̇β̇(η̄η̄).

(A.1)

But with a more comfortable definition for the derivative

∂α =
∂

∂ηα
, ∂̄α̇ =

∂

∂η̄α̇
,

∂α = −
∂

∂ηα
= εαβ∂β, ∂̄α̇ = −

∂

∂η̄α̇
= ε

α̇β̇
∂̄β̇ .

(A.2)
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